SMD Inductors

PRELIMINARY DRAFT

Large-Current Power Inductors MPLCV

Overview

The KEMET MPLCV metal composite inductors are ideal for use in DC to DC switching power supplies for automotive applications. The combination of composite core material and round wire allows these inductors to be used in applications with high switching frequencies and where efficiency is important.

Applications

- · Automotive ECU applications
- LED head lights
- Meter cluster panels
- Head-up displays (HUD)
- Electric water pumps (EWP)
- Electric oil pumps (EOP)
- Electric power steering (EPS)

Benefits

- · Metal composite powder
- Operating temperature up to +150°C
- High current
- Low DCR
- Low accoustic noise
- · Low magnetic flux leakage
- AEC-Q200 qualified

Part Number System

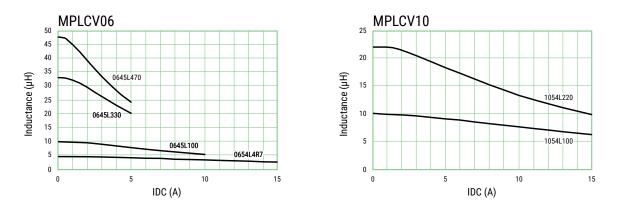
MPLCV	0645	L	100
Series	Size Code	Inductor	Inductance Code µH
MPLCV	0645 0654 1054		The first two digits represent the inductance value. The third digit inidcates the number of zeros to be added. R = decimal point Example: 4R7 = 4.7 µH

Performance Characteristics

Item	Performance Characteristics
Operating Temperature	-40°C to +150°C (including self-temperature rise)
Rated Inductance Range	4.7 – 47 μH at 100 kHz, 1 mA
Inductance Tolerance	±20%
Rated DC Resistance Range	25 – 175 mΩ
DC Resistance Tolerance	±10%
Rated Current Range	2.1 – 7.1 A

Table 1 – Ratings & Part Number Reference

Dort Number	Inductance (µH)	Inductance	DC Resistance (mΩ)	Rated Current (A)		
Part Number	at 100 kHz, 1 mA	Tolerance	±10&	Irms ¹ (Ref.)	Isat ² (Ref.)	
MPLCV0645L100	10.0	±20%	45	4.0	6.5	
MPLCV0654L4R7	4.7	±20%	20	6.3	10.5	
MPLCV0654L330	33.0	±20%	140	2.6	4.0	
MPLCV0654L470	47.0	±20%	175	2.1	3.0	
MPLCV1054L100	10.0	±20%	25	7.1	12.0	
MPLCV1054L220	22.0	±20%	47	5.5	7.0	


¹ T = 40 K rise at rated current.

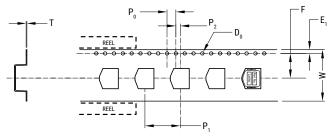
² Inductance drop 30% at rated current.

SMD Inductors Large-Current Power Inductors MPLCV

DC-Superposed Characteristics

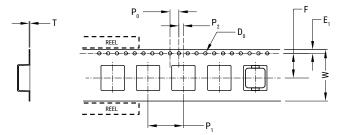
Dimensions

Part Number	Dimensions (mm)	Land Pattern (mm)
MPLCV0645	7.9 maximum 4.5 maximum (1.4) 	
MPLCV0654	7.9 maximum 5.4 maximum 1.4 	
MPLCV1054		



Taping Specification

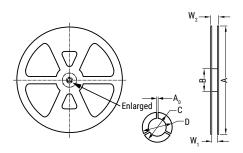
Large-Current Power Inductors MPLCV


SMD Inductors

Dimensions of indented square hole plastic tape

Case Reel Dimensions (mm)					n)			
Size	Quantity	tity		P ₁	P ₂	P ₀	øD₀	Т
MPLCV0645	1.000	Tolerance	±0.1	±0.1	±0.1	±0.1	±0.05	±0.05
MPLCV0654	1,000	Nominal	1.75	12.0	2.0	4.0	1.55	0.4

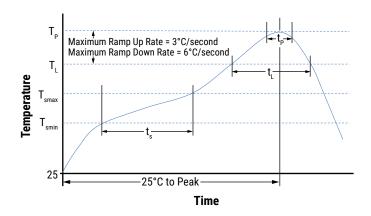
Dimensions of indented square hole plastic tape



Case	Reel			D	imensio	ons (mr	n)	
Size	Quantity		E,	P ₁	P ₂	P ₀	øD₀	T
	1 000	Tolerance	±0.1	±0.1	±0.1	±0.1	±0.05	±0.05
MPLCV1054	1,000	Nominal	1.75	16.0	2.0	4.0	1.55	0.4

SMD Inductors Large-Current Power Inductors MPLCV

Reel Specifications


Case	Dimensions (mm)							
Series		Α	В	C	D	A ₀	W ₁	W ₂
MPLCV0645	Tolerance	±2.0	±2.0	±0.2	±0.8	±0.5		
MPLCV0654	Nominal	ø380	ø80	ø13.0	ø21.0	2.3	17.5	21.5
	Tolerance	±2.0	±2.0	±0.2	±0.8	±0.5		
MPLCV1054	Nominal	ø380	ø80	ø13.0	ø21.0	2.3	25.5	29.5

Soldering Process

Recommended Reflow Soldering Profile

Reference ICP/JEDEC J-STD-020E

Profile Feature	Pb-Free Assembly
Preheat/Soak	
Temperature Minimum (T _{smin})	150°C
Temperature Maximum (T _{smax})	200°C
Time (t _s) from T _{smin} to T _{smax}	60 – 120 seconds
Ramp-Up Rate (T_L to T_P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time Above Liquidous (t _L)	60 – 150 seconds
Peak Temperature (T _P)	250°C for MPLCV06xx 245°C for MPLCV1xxx
Time Within 5°C of Maximum Peak Temperature (t _p)	30 seconds maximum
Ramp-Down Rate $(T_p to T_L)$	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

SMD Inductors Large-Current Power Inductors MPLCV

Handling Precautions

Inductors should be stored in normal working environments. While the inductors themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage.

KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Atmospheres should be free of chlorine and sulfur bearing compounds. Temperature fluctuations should be minimized to avoid condensation on the parts. For optimized solderability, inductors' stock should be used promptly, preferably within six months of receipt.

Export Control

For customers in Japan

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

For customers outside Japan

Inductors should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destruction weapons (nuclear, chemical, biological weapons or missiles), or any other weapons.

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.